設 a、b和 c 是三個質數。若 a < b < c 及 c = a^2 + b^2 ,求 a 的值。
Let a, b and c are three prime numbers. If a < b < c and c = a^2 + b^2 , find the value of a.
HKMO(2005 – 2006) Heat Event (Group)
Let P and P+2 be both prime numbers satisfying P(P+2)<= 2007. If S represents the sum of all such possible values of P, find the value of S.
設P 及 P + 2均為質數並滿足 P(P+2)<= 2007 。 若 S 是符合上述要求的質數 P的總和,求 S 的值。
HKMO(2006 – 2007) Final Event 1 (Group)
Find all solutions in positive integers x, y, z to the simultaneous
equations
求以下聯立方程組的所有正整數解.
x + y − z = 12
x^2 + y^2 − z^2 = 12.
British MO 2007 - 2008
A six-digit number 1234xy is divisible by 8 ans 9. Given that x + y = c, find the value of c.
一個六位數1234xy能同時被8和9整除. 已知 x + y = c, 求c的值
HKMO 2000 - 2001 Final Event (Group)
Given that 111111222222 = c(c+1), find the value of c
已知111111222222 = c(c+1), 求c 的值
HKMO(2000 - 2001) Final Event 1 (Group)
Let n be an integer greater than 6. Prove that if n − 1 and n + 1 are both prime,
then n^2(n^2 +16) is divisible by 720. Is the converse true?
設 n 是一個大於6的整數. 若 n - 1及 n + 1都質數,證明n^2(n^2 +16)能被720整除.
它的逆命題 (即若 n^2(n^2 +16)能被720整除, n - 1及 n+1是否都是質數)是否成立?
British MO 2005
求 2004^2006。
Find the unit digit of 2004^2006 .
(HKMO 1999-2000 Heat Event Group)
(HKMO 2002-2003 Final Event 1 Individual)
若以5除 7^2007 所得的餘數是 R,求 R 的值。
If the remainder of 7^2007 when dividing by 5 is R, find the value of R.
(HKMO 2006-2007 Heat Event Group)
原帖由 Naozumi 於 2008-11-8 10:53 PM 發表
乜野係數論呢? 好粗略咁講,佢係研究整數的整除性,質數的關係等等. 數論廣泛地用於關乎internet安全的密碼學(cryptography)
呢d野係中學課程近乎冇提過,不過講真唔係難得咁緊要 (當然指係MO/IMO用到的部分內容). 舉個 ...
原帖由 c443122 於 2008-11-18 10:20 PM 發表
7^1 = 7
7^2 = 49
7^3 = 343
7^4 = 2401
7^5 = 16807
.....
7^2007 = 7^(2004+3) = %%@%@%#@$3
so remainder = 3???
原帖由 Naozumi 於 2008-11-20 11:14 PM 發表
因為你唔用 7^2黎做 9的次方的字尾只有1同9,簡單好多
你再狠d用 7^4黎做,咁只有(7^4)^n = 1 (mod 5)
已知 a、 b、 c 是正整數,且滿足a < b < c = 100,求以 a cm、b cm、c cm 為邊長的三角形的個數。
Given that a, b, c are positive integers and a < b < c = 100, find the number of triangles formed with sides equal a cm, b cm and c cm.
HKMO 1998-1999 Heat Event (Individual)
歡迎光臨 2000FUN論壇 (https://www.2000fun.com/) | Powered by Discuz! X1.5.1 |