2000FUN論壇

 

 

搜索
2000FUN論壇 綜合論壇 學生討論區 Maths解答區/交流區
返回列表 發新帖 回覆
查看: 3802|回覆: 15
go

[其他] Maths解答區/交流區 [複製鏈接]

Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6

UID
942067 
帖子
3974 
積分
4334 
Good
30  
註冊時間
07-8-23 
在線時間
705 小時 
1#
發表於 10-9-14 08:17 PM |只看該作者 |倒序瀏覽 |打印
事緣在這區看見許多會員對有關Maths的課業難題百思不解。

本人特此在此開一個集中帖,希望形成一個數學集聚地,作互相分享和交流,同時使彼此的數學有所進步。

不論誰也可以發問,也可以解答,僅以交流,絕對歡迎參與!
已有 1 人評分Good 收起 理由
壺一v一 + 3 精品文章

總評分:  Good + 3   查看全部評分

Rank: 5Rank: 5Rank: 5Rank: 5Rank: 5

UID
1229731 
帖子
853 
積分
2673 
Good
39  
註冊時間
09-3-2 
在線時間
616 小時 

Alta活動勳章

2#
發表於 10-9-15 06:58 PM |只看該作者
我會幫手答架啦中5以下既我多數都識-_-

Rank: 10

UID
515938 
帖子
9686 
積分
51 
Good
614  
註冊時間
05-12-28 
在線時間
2570 小時 

十週年勳章(賀詞) 十週年勳章(截圖)

3#
發表於 10-9-16 09:42 AM |只看該作者
I have a question

A point P(x,y) is ok the curve y=X^2+1

a) Express the distance from P to the origin as a function of x.
b) In part (a), you expressed the length of a certain line segment as a function of x. Now exoress the slope of that line segment in terms of x.

the answer is....
a)  D(x)= 平方x^4+3x^2+1
b)  m(x)= (x^2+1)/x

Who knows how can do it....think you

Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6

UID
942067 
帖子
3974 
積分
4334 
Good
30  
註冊時間
07-8-23 
在線時間
705 小時 
4#
發表於 10-9-16 08:17 PM |只看該作者
(a)
We had already learnt how to find the distance between two points in form4.

There is one important formula have been provided in order to make us to find distance become easy as following:
S = √{(y2-y1)^2 + (x2-x1)^2}

So, let me to put the existing information into this formula, we know the origin is (0,0), and P is (x,y), which is on the curve x^2+1.
S = √{(y-0)^2 + (x-0)^2}
 = √{(x^2+1-0)^2 + (x)^2}
 = √{(x^2+1)^2 + (x)^2}
 = √(x^4+2x^2+1+x^2)
 = √(x^4+3x^2+1)

Therefore, we find the distance between any point on curve y=x^+1 and (0,0) is  √(x^4+3x^2+1).

(b)
This time we need to find the slope of the line that we had find in part(a).
The formula of slope is (y2-y1)/(x2-x1)
So, let me put the existing information into this formula,

let M be the slope of line.
M=(y-0)/(x-0)
 =(x^2+1-0)/(x-0)
 =(x^2+1)/x

[ 本帖最後由 飛機場^_^ 於 10-9-16 08:22 PM 編輯 ]
已有 1 人評分Good 收起 理由
壺一v一 + 2 thx for you signal buddy^^

總評分:  Good + 2   查看全部評分

Rank: 10

UID
515938 
帖子
9686 
積分
51 
Good
614  
註冊時間
05-12-28 
在線時間
2570 小時 

十週年勳章(賀詞) 十週年勳章(截圖)

5#
發表於 10-9-17 11:23 AM |只看該作者
Think you. it was so clearly.
But can you explain what means is S and M and D
because the answer is D(x) m(x), I have no idea when i need to write D(X) M(X)

i have the another question>.< the exam is coming>.<S_O_S

Q: Let 2s denote the length of the side of an equilateral triangle.
a) Express the height of the triangle as a function of s.
b)exoress the area of the triangle as a function of s.
c) Use the function you found in part(a) to determine the height of an equilateral triangle, each side of which is 8cm long.
~~~~~~~~~~~~~~~~~~~~~
my answer:
  /\       a) (2s)^2= H^2+(2s/2)2
 /  \ 2S            4s^2  = h^2+s^2
/____\                           3s^2 = h^2
 2s/2                                     s^2= (h^2)/3
                                            s   =  √{(h^2)/3}
                                 b) (1/2) (√{(h^2)/3}) (2S)
just i guess..but very strange

Q2) The volume V and the surface area S of a  sphere of radius r are given by the formulas
V= (4/3派r^3) and S=4派r^2. Express V as a function of S
P.S派=3.14=.=
佢係問圓球體 但之後點=[

Q2 答案) V(S) = (S√S派) / 6派

Q3) A piece of wire 4m long is cut into two pieces, then each is bent in to a square.
Express the combined area of the two ssquares in terms of one variable.

my answer) 設第1條=Xm  第2條= 4-Xm
x/4 = 第1個正方形邊    (4-X) / 4=第2個正方形邊
(X/4)^2 + {(4-x)/4}^2 = area
x^2/16 + 16-x^2 / 16 = area
area =  (x^2 - x^2 + 16) / 16
area = 1m  
isn't it= =???

Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6

UID
942067 
帖子
3974 
積分
4334 
Good
30  
註冊時間
07-8-23 
在線時間
705 小時 
6#
發表於 10-9-17 04:52 PM |只看該作者
Well, S and M is just like D(x) and M(x), it's just a defintion which is maybe people like to use them and think them is easy to express the notion. Anyway, don't mind it, it'd not make your answer become wrongly.   

But you have better to used D(x) and M(x) express the notion, it can show the curve is a function of x. Besides, I think D(x) is mean distance, and M(x) is mean slope. People who learn Maths is always use M to instead of slope, so this show the reason why the answer call it M(x).

I suspect that you have do a right answer of these question. But I don't know what detail you want to understand, i'm sorry. You may think it by yourself and also believe youself.^^

[ 本帖最後由 飛機場^_^ 於 10-9-17 04:54 PM 編輯 ]

Rank: 5Rank: 5Rank: 5Rank: 5Rank: 5

UID
120847 
帖子
1783 
積分
2124 
Good
6  
註冊時間
03-11-2 
在線時間
1824 小時 
7#
發表於 10-9-20 08:43 PM |只看該作者
probability 問題,
Q23
請幫手

Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7

UID
1095377 
帖子
118 
積分
36224 
Good
8  
註冊時間
08-6-19 
在線時間
60 小時 
8#
發表於 10-9-20 09:29 PM |只看該作者
月球被太陽照射的一面,其表面溫度最高可達127度;在沒有被太陽照射的一面,其表面溫度最低為-183 度。求月球表面最高和最低溫度之差。

Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9

UID
150752 
帖子
3947 
積分
4879 
Good
33  
註冊時間
04-1-30 
在線時間
5836 小時 
9#
發表於 10-9-20 11:34 PM |只看該作者
Q23
(b) P[E and (F or G)] = P[(E and F) or ( E and G)]
                                 = P(E and F) + P(E and G) - P(E and F and E and G)
                                 = P(E)P(F) + P(E)P(G) - P(E and F and G)
                                 = P(E)P(F) + P(E)P(G)
                                 = P(E) [P(F) + P(G)]
                                 = P(E) [P(F or G)]
Hence E is independent of (F or G)
(c) P[G and (E and F)] = P(E and (F and G)]
                                   = P(E) P(F and G)
                                    = P(E) P(F) P(G)
                                   = P(E and F)P(G)
Hence, G, E and F are independent

Rank: 5Rank: 5Rank: 5Rank: 5Rank: 5

UID
120847 
帖子
1783 
積分
2124 
Good
6  
註冊時間
03-11-2 
在線時間
1824 小時 
10#
發表於 10-9-21 07:39 PM |只看該作者
原帖由 Naozumi 於 10-9-20 11:34 PM 發表
Q23
(b) P[E and (F or G)] = P[(E and F) or ( E and G)]
                                 = P(E and F) + P(E and G) - P(E and F and E and G)
                                 = P(E)P(F) + P(E)P(G) - P ...

Thanks!
請問有冇人識PART A AND D???

Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7

UID
378976 
帖子
10092 
積分
9504 
Good
157  
註冊時間
05-4-5 
在線時間
2775 小時 
11#
發表於 10-9-22 09:15 PM |只看該作者
原帖由 bens 於 10-9-20 09:29 PM 發表
月球被太陽照射的一面,其表面溫度最高可達127度;在沒有被太陽照射的一面,其表面溫度最低為-183 度。求月球表面最高和最低溫度之差。

唔係加減數咩-,-?

Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6Rank: 6

UID
1048939 
帖子
3443 
積分
4706 
Good
58  
註冊時間
08-3-15 
在線時間
412 小時 
12#
發表於 10-9-26 08:16 PM |只看該作者
1+1=?
1ax9993s=9g

Rank: 4Rank: 4Rank: 4Rank: 4

UID
908822 
帖子
451 
積分
851 
Good
2  
註冊時間
07-6-27 
在線時間
64 小時 

十週年勳章(賀詞)

13#
發表於 10-9-28 10:26 PM |只看該作者
我有一題關於Arithmetic Sequence ge數唔多識做T^T 有冇人可以解答下o_o

In an arithmetic sequence ,the product of the 1st term and the 2nd term is 150. The sum of the 5th term and the 6th term is 15. Suppose the first term is a negative number.
(a)  Find the first term and the common difference. <--用聯合方程計?
(b)  Find the general term T(n) of the sequence.
(c)  Determine whether 200 is a term of the sequence.

THX><

Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7Rank: 7

UID
378976 
帖子
10092 
積分
9504 
Good
157  
註冊時間
05-4-5 
在線時間
2775 小時 
14#
發表於 10-9-28 11:09 PM |只看該作者
原帖由 二陵 於 10-9-28 10:26 PM 發表
我有一題關於Arithmetic Sequence ge數唔多識做T^T 有冇人可以解答下o_o

In an arithmetic sequence ,the product of the 1st term and the 2nd term is 150. The sum of the 5th term and the 6th term is 15. S ...

yes

Rank: 4Rank: 4Rank: 4Rank: 4

UID
908822 
帖子
451 
積分
851 
Good
2  
註冊時間
07-6-27 
在線時間
64 小時 

十週年勳章(賀詞)

15#
發表於 10-9-29 11:28 PM |只看該作者
咁我想問..c點做

Rank: 4Rank: 4Rank: 4Rank: 4

UID
1127816 
帖子
119 
積分
993 
Good
0  
註冊時間
08-8-8 
在線時間
1320 小時 

十週年勳章(賀詞) 笑傲無雙

16#
發表於 10-10-16 03:54 PM |只看該作者
Q3.等差級數32,25,18,11,...的總和為-12,903,求該數的總項數

[ 本帖最後由 R-H-Y 於 10-10-16 03:56 PM 編輯 ]
‹ 上一主題|下一主題
你需要登錄後才可以回帖 登錄 | 免費註冊

聯絡我們|Archiver| 2000FUN論壇

SERVER: 2 GMT+8, 25-5-25 02:10 PM , Processed in 0.038939 second(s), 14 queries , Gzip On.

Sponsor:工作間 , 網頁寄存

Powered by Discuz! X1.5.1

© 2001-2010 Comsenz Inc.