- 閱讀權限
- 95
- 最後登錄
- 11-11-17
- 精華
- 0
- UID
- 150752
- 帖子
- 3947
- 積分
- 4879
- 註冊時間
- 04-1-30
- 在線時間
- 5836 小時
        
- UID
- 150752
- 帖子
- 3947
- 積分
- 4879
- Good
- 33
- 註冊時間
- 04-1-30
- 在線時間
- 5836 小時
|
好簡單
Let a in A, b in B.
a - b <= Sup A - b
<= Sup A - inf B ( b>= inf B)
So, Sup A - inf B is an upper bound of the set {a in A, b in B : a - b}
For all e > 0
Sup A - inf B - e = (Sup A - e/2) - (inf B + e/2)
By definition of Sup, there is an element a' in A s.t. a' > Sup A - e/2
By definition of inf, there is an element b' in B s.t. b' < inf B + e/2
hence, Sup A - inf B - e < a' - b'
i.e. Sup A - inf B is the least upper bound of the set {a in A, b in B : a - b} |
-
總評分:
Good + 2
查看全部評分
|