2000FUN論壇

 

 

搜索
2000FUN論壇 綜合論壇 學生討論區 need help with maths ..
返回列表 發新帖 回覆
查看: 2130|回覆: 3
go

[其他] need help with maths .. [複製鏈接]

Rank: 1

UID
187983 
帖子
328 
積分
29 
Good
0  
註冊時間
04-5-8 
在線時間
276 小時 
1#
發表於 10-4-13 10:07 PM |只看該作者 |倒序瀏覽 |打印
1. Let X be a random variable taking values in the positive integers,
    with probablity mass function of the form:

                   px(k) = a.3^(-k)

a) Determine a.
b) Is X more likely to take even or odd values?
c) If they exist, calculate E(X) and V(X)


2. Ten computers are linked by only one line to the network. Each computer needs to log on to the network for 12 minutes an hour on average. Sessions initiated by different computers are independent of each other, and two computers cannot use the line simultaneously.

a) For k= 0,...10, what is the probablity that k computers simultaneously need the line? What is the most likely number of computers requiring the line at one time?

b) We add lines to the network, allowing simultaneous sessions. What is the minimum number c of lines that are reqiured so that the probablity of overload at some fixed time t is less than 0.007?

3. Let X be a continuose non negative random variable with distribution function F (x) and probablity density function f(x). Define the failure rate function as    r(x) = f( x) / ( 1-F(x) )

and the survival function G(x) = 1 - F(x)

a) show that for a non negative continuous random variable X with failure rate function r, X has survival function
G(x)=  exp ( - int ( r(u) du) )

b) Consider a certain type of ball-bearing that wears down gradually at a slow but steady rate. To model this, we suppose that its failure rate function is linearly increasing r(x) = ax for some a >0. It has been observed that the median lifetime is 3 years. What is the probability that such a ball-bearing lasts for more than 4 years?

c) Find the probablity density functions of non negative continous random variables with failure rate functions

i) r (x) = x^3
ii) r(x) = 1 = (1+x)

[ 本帖最後由 奶白金 於 10-4-13 10:21 PM 編輯 ]

Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9

UID
150752 
帖子
3947 
積分
4879 
Good
33  
註冊時間
04-1-30 
在線時間
5836 小時 
2#
發表於 10-4-15 09:10 PM |只看該作者
乜野功課黎架,咁鬼深??

Q1






[ 本帖最後由 Naozumi 於 10-4-15 11:31 PM 編輯 ]

Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9

UID
150752 
帖子
3947 
積分
4879 
Good
33  
註冊時間
04-1-30 
在線時間
5836 小時 
3#
發表於 10-4-15 10:51 PM |只看該作者
Q3






(c)(ii)題目打錯,是否 1/(1+x)?

[ 本帖最後由 Naozumi 於 10-4-18 11:25 PM 編輯 ]

UID
1707975 
帖子
30 
積分
-9 
Good
0  
註冊時間
10-4-26 
在線時間
0 小時 
4#
發表於 10-4-27 06:50 PM |只看該作者
‹ 上一主題|下一主題
你需要登錄後才可以回帖 登錄 | 免費註冊

聯絡我們|Archiver| 2000FUN論壇

SERVER: 2 GMT+8, 25-11-29 10:50 PM , Processed in 0.031786 second(s), 13 queries , Gzip On.

Sponsor:工作間 , 網頁寄存

Powered by Discuz! X1.5.1

© 2001-2010 Comsenz Inc.